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Abstract—Accurate parameter estimation of small scale DC
motors is a challenging and a complex task compared to it’s
large scale counterpart. This research proposes a novel technique
of parameter estimation based on the disturbance observer and
optimization algorithms for DC motor applications.A simplified
yet an accurate cost function has been proposed for the model
which is based on the disturbance observer (DoB) . Newton Raph-
son algorithm is used as the optimization algorithm. Moment
of inertia, static friction, and coefficient of viscous friction are
estimated and compared with the actual parameters. Simulations
were carried out to justify the approach. The novel parameter
estimation technique has shown accurate results compared to the
existing methods.

Index Terms—Parameter estimation, Newton Raphson, Distur-
bance observer (DoB), Cost function, Least square error, Moment
of inertia, Static friction, Viscous friction

I. INTRODUCTION

DC motors play an important role in mechanical motion
systems. In the early days, majority of DC motor applications
were limited to large scale systems such as in automobile in-
dustry and in manufacturing industry [1], [2]. Recent achieve-
ments in technology such as high speed digital processors and
high resolution motor drivers have broaden the application
range of motion control systems [3].

High accuracy and robustness are crucial factors of pre-
cises motion control applications [4]. The achievable accu-
racy/precision of a motion control system is bounded by sensor
limitations [5]. As an example, the maximum achievable
accuracy of an encoder is bounded by the encoder resolution.
Robustness is an integration of both stability robustness and
performance robustness. Having a high robustness reduces the
fine tuning efforts in motion systems against the uncertainties.
Thus for a precise motion requirement, it is necessary to
achieve high performance in both mechanical and electrical
aspects [3], [6].

System modelling is a decisive aspect in a motion control
system design. However, modelling uncertainty is a major
barrier in motion control systems [7]. Modeling uncertainties
can deteriorate control performances. Unexpected operation or
even system instabilities can cause as a result. As per the Liter-
ature, modelling uncertainties consist of structured uncertain-
ties and unstructured uncertainties [7]–[11]. Structured uncer-
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tainties are caused by unknown parameters within the known
model and the unstructured uncertainties are the unmodeled
nonlinearities [7]. Researchers have proposed several control
architectures to minimize the effects of these uncertainties.
Generalized internal model control and Disturbance observer
(DoB) based control models are some popular examples [12].
Particularly, DoB model proposed by Ohnishi et al is the
most prominent robust control tool since the robustness can be
altered according to the user’s choice [13]. The DoB estimates
system uncertainties and disturbances, which are then fed
back using an inner loop to accomplish the robustness [14].
The performance goals are achieved through an outer loop
by considering only the nominal plant model [12]. Design
parameters of DoB such as inertia and motor thrust constant
are prone to structured uncertainties [6]. Therefore, use of DoB
in precise motion control applications is still a challenge. The
requirement of knowing exact system parameters is therefore
an important aspect in motion controller designs [4].

The manufacturer given data is considered as the system
parameters in most of the DoB based DC motor applications.
However, literature claims these values are inaccurate due to
several reasons [4]. Wear and tear effects,addition or removal
of additional accessories to the shaft, and estimation errors of
manufacturers are some common reasons. Therefore the use
of parameter estimation methods are popular among motion
control applications. Constant velocity test for frictional coeffi-
cients, and acceleration/deceleration tests for inertia estimation
are some of the widely used techniques. Small scale motion
systems require high levels of estimation accuracy to meet
the performance goals than the large scale systems. Achieving
such accuracy requires a huge amount of resources such as
processing power and time. Inaccurate estimations could lead
for undesired operations in motion control systems.

Ubiquitous advancement in computational power of digital
processors, researchers have focused on more intelligent and
advanced models that use techniques like regression, for
parameter estimation [15]–[20]. Use of machine learning algo-
rithms such as gradient descent and newton raphson methods
have shown improved accuracy and reduced effort in this
context. In practice, a selected regression model consists of
partially known and partially unknown components. Further-
more, the structural model of the system is to be known
and a prior knowledge on known components are required.



A recursive optimization method is then used to estimate the
unknown components.

In this research work, a novel parameter estimation method
is proposed for the DoB based robust control models. This
method uses modified newton raphson method which is an
optimization algorithm combined with the DoB model and it
has shown that this approach has better results compared to
the conventional methods.

The paper is organized as follows. Section 2 gives the
detailed DC motor model and introduces the disturbances
acting on a motor. The DoB model for the DC motor is
presented in section 3. Section 4 explains the regression
algorithm for parameter estimation and thereby an objective
function for optimization is proposed. The effectiveness of
proposed method is revealed in section 5 through simulation
results. Finally, section 7 presents the conclusion.

II. DISTURBANCE OBSERVER (DOB) FOR A DC MOTOR

A. DC motor model

The electrical model of a DC motor is presented in figure
1 [21]. The relationship between supply voltage, generated
motor torque, and armature current can be formulated as in
equations (1),(2),(3)and (4).

Fig. 1: Electrical representation of a DC motor

V = RaIa + La
dIa
dt

+ e (1)

e = keθ̇ (2)

τm = ktIa (3)

Considering the dynamic parameters of the motor, generated
motor torque (τm) can be re-written as in equation (4)

τm = J
dθ̇

dt
+ τf + τl (4)

Here ”J dθ̇dt ” term represents the torque due to the inertia
of the system. As per the disturbance definition, disturbance
applied on the motor shaft can be defined as in equation (5).
Equation (4) is then can be reduced to equation (6)and (7).
According to equation (7) the disturbance acting on a DC
motor can be modelled as in figure 2.

τdis = τf + τl (5)

TABLE I: Nomenclature

Symbol Description

V Supply voltage

Ra Armature resistance

La Armature inductance

Ia Armature current

e Induced back-emf

ke Back - emf constant

θ̇ Angular velocity of the motor

τm Generated motor torque

τf Torque due to friction

τsf Torque due to static friction

τdf Torque due to dynamic friction

τl Torque due to external loads

kt Torque coefficient

ktn Nominal value of torque coefficient

J Motor inertia

Jn Nominal value of motor inertia

gdis Cut-off frequency of the low pass filter

B Coefficient of viscous friction

τm = J
dθ̇

dt
+ τdis (6)

from equation (3);

ktIa = J
dθ̇

dt
+ τdis (7)

Fig. 2: Block diagram of a DC motor

B. Disturbance Observer(DoB) Model

In control theory, a disturbance observer is used as a robust
control tool to enhance the overall system performance [22].
The basic idea of the DoB is to estimate disturbances and then
compensate them [21], [23], [24].

The control strategy based on acceleration control is widely
used in high precision applications due to it’s simplicity and
guaranteed robustness properties [25]. Motor model repre-
sented in figure 2 can be rearranged as in figure 3 to realize
the acceleration control. It is assumed that viscous effects are
as disturbances to the motor [26].

In case, where τdf is the torque due to viscous friction and
it can be expressed as in equation (8).

τdf = Bθ̇ (8)



Fig. 3: Block diagram of a DC motor based on disturbance
definition

As per figure 3, the disturbances on the motor can be
estimated from equation (9). Since the nominal parameters can
slightly be varied from actual values, the disturbances which
are estimated from disturbance observer can be expressed as
in equation (10).

ˆτdis = ktnIa − Jnθ̈ (9)

ˆτdis = (J − Jn)θ̈ +Bθ̇ + τsf + τl + (ktn − kt)Ia (10)

Figure 4 represents a disturbance observer integrated to a
DC motor model, which is described in equation (9). Low pass
filter Q(s) is used to eliminate high frequency disturbance
components caused by the measurement noise.

Fig. 4: DoB integrated DC motor model

ˆτdis = Q(s)(ktnIa − Jnθ̈) (11)

where;
Q(s) =

gdis
s+ gdis

(12)

Due to practical drawbacks in measuring θ̈, Ohnishi et al.
had rearranged the model in figure 4 to the model in figure 5
which uses θ̇ as a measuring parameter [3], [14].

The disturbance observer presented in figure 5 estimates and
feed-backs the uncertain disturbances to realize robustness.
The effectiveness of disturbance estimation relies on several

Fig. 5: Modified DoB integrated DC motor model

factors such as CPU speed, accuracy of estimated motor
parameters, and the value of the filter constant gdis. Next
section will focus on a novel parameter estimation method
to improve the accuracy of nominal motor parameters.

III. LINEAR REGRESSION MODEL

This section is focused on deriving a linear regression model
that relates the system parameters and motion parameters to
the DoB estimation. It follows the equation (10). At the end
of this section,it will be concluded that the problem of system
parameter estimation can be reformulated to a problem of
parameter estimation in a linear regression model.

The general form of a multi-variable linear regression model
can be presented as equation (13) [27], [28].

y(k) = a0x0(k) + a1x1(k) + a2x2(k) + ...+ anxn(k) (13)

The vector form of equation (13) can be expressed as in
equation (14)

y(k) = X(k)A (14)

where,

X(k) =
[
x0(k) x1(k) x2(k) ... xn(k)

]
(15)

AT =
[
a0 a1 a2 ... an

]
(16)

y(k) - measured output
X(k) - Vector of measurable motion quantities

A - Vector of unknown parameters

k represents the data point at time kdt where dt is the sam-
pling time interval. Since the motor parameters are unique, a
linear regression model is selected which makes the estimation
process much more precise.



Fig. 6: NRA based iterative approach for parameter estimation

A. Problem formulation

Generally torque constant of a motor is constant over time
compared to other motor parameters. Therefore, complexity
of the derived motor model can be reduced by neglecting the
variation of motor torque constant 4K . Hence, equation (10)
can be reduced to equation (17).

τ̂edis(k) = 4Jθ̈(k) +B ˙θ(k) + τsf (17)

where (J − Jn) = (4J) and (kt − ktn) ≈ 0.
Angular velocity (θ̇) and angular acceleration (θ̈) are mea-

surable variables. Thus, the prediction of Disturbance observer
output can be realized, if the coefficients 4J , B and τsf
are known. The aim of this approach is to fit these unknown
coefficients in a way such that the disturbance observer output
coincides with the prediction of the model represented in
equation (17).

For the ease of formulation purpose, equation (17) is rear-
ranged as in equation (18).

τ̂edis(k) =
[
1 θ̇(k) θ̈(k)

] τsfB
4J

 (18)

Note that the equation (18) is of the form described in
equation (14),

X(k) =
[
1 θ̇(k) θ̈(k)

]
(19)

AT =
[
τsf B 4J

]
(20)

Where, x0 = 1, x1 = θ̇(k), x2 = θ̈(k) , a0 = τsf ,a1 = B
and a2 = 4J .

Therefore, it is clear that the system parameter estimation
can be realized from parameter estimation of the linear regres-
sion model presented in equation (18).

B. Objective / Loss function

Least square error approach is simple yet a powerful numer-
ical method in mathematics for optimization problems. The
unknown variables of the model represented in equation (18)
can be computed using an iterative approach by minimizing

the square error E(Ai) which is formulated in equation (21).
Here, i represents the ith iteration of the optimization process.
The square error function which is described in equation (21)
and (22) is the objective function or the loss function . It
will be optimized in the next section to compute the unknown
parameter matrix A.

E(Ai) =
1

2m

m∑
k=1

( ˆτdis,k − τedis,k)2 (21)

substituting from (22);

E(Ai) =
1

2m

m∑
k=1

(τ̂dis,k−(a0x0,k+a1x1,k+a2x2,k))
2 (22)

Here, m is the number of data samples and x1,k is the
kth reading of angular velocity / θ̇(k) used in the estimation
process.

IV. MODEL FITTING FOR PARAMETER ESTIMATION

System parameter estimation of a DC motor can be achieved
by solving the regression model which was derived in the pre-
vious section. In this section, a novel algorithm for parameter
estimation is presented.

A. Newton Raphson Algorithm (NRA) for Least Square Error
estimation

An optimization is performed to find the best matching
solution for a pre-defined problem. Usually, this is achieved in
an iterative manner. The selection of optimization algorithm is
determined after considering various factors such as linearity
of the task, influencing constraints and number of unknown
parameters.

Gradient descent, steepest descent, and Leven-
berg–Marquardt methods are some of the widely used
optimization algorithms [29]. However, they have several
drawbacks such as computational costs, solutions not being
the optimal local minimum and high sensitivity to noise.

This section presents a novel system parameter estimation
technique based on NRA. This specific choice of optimization
algorithm overcomes the previously mentioned drawbacks.



Furthermore, a rapid convergence can be achieved. Hence,
NRA allows the implementation of a parameter estimation
method which is suitable for real time applications.

The NRA is a powerful iterative technique used to solve
algebraic equations. Initialized with an initial guess, an op-
timum solution can be attained by improving the guess un-
til a tolerable error measure is achieved. The increment is
computed using a series of second order Taylor expansions of
E(Ai) around the iterates. The second order Taylor expansion
of E(Ai) around Ai can be formulated as in equation (23)
[30].

E(Ai +4A) ≈ E(Ai) +∇E(Ai)4A+
1

2
∇2E(Ai)(4A)2

(23)
The next iterate, Ai+1 is defined in such a way that the
quadratic approximation of 4A is minimized. Then the iterate
Ai+1 is calculated as in equation (24).

E(Ai+1) = E(Ai) +4A (24)

The quadratic approximation is a convex function of 4A so
as to exists a minimum. This minimum is achieved by setting
the derivative to zero as described in equation (25).

d

d(4A)
(E(Ai) +∇E(Ai)4A+

1

2
∇2E(Ai)(4A)2) = 0

(25)
Simplifying (25), equation (26) can be derived.

∇Ai +∇2Ai(4A) = 0 (26)

Therefore, the recursive term in NRA can be derived as in
equation (27).

Ai+1 = Ai −∇2A−14A (27)

Here, ∇2Ai is the hessian matrix of Ai and the 4A is the
gradient matrix of Ai. These two matrices can be described
as in equation (28) and (29).

∇2Ai =


∂2E(Ai)
∂a20

∂2E(Ai)
∂a0∂a1

∂2E(Ai)
∂a0∂a2

∂2E(Ai)
∂a1∂a0

∂2E(Ai)
∂a21

∂2E(Ai)
∂a1∂a2

∂2E(Ai)
∂a2∂a0

∂2E(Ai)
∂a2∂a1

∂2E(Ai)
∂a22

 =
1

m
XT ∗X (28)

∇Ai =
1

m


∑m
k=1(τ̂dis,k −

∑2
j=0 ajxj,k)x1,k∑m

k=1(τ̂dis,k −
∑2
j=0 ajxj,k)x2,k∑m

k=1(τ̂dis,k −
∑2
j=0 ajxj,k)x3,k

 (29)

where X is the ”m” by 3 matrix that contains all the
measured data. As a summary to the described algorithm,
figure 6 illustrates the estimation of system parameters of a
DC motor using NRA.

V. SIMULATION

To reveal the performance and feasibility of the proposed
technique, computer simulations have performed using a
programming platform. It has considered for the simulation
purpose, a typical DC motor controlled by a conventional PID

based velocity controller as in figure 7. The system parameters
and specifications of the simulated DC motor setup is listed
in table II.

TABLE II: Specifications of simulated DC motor and the
controller

Specifications Values

kt 0.135[Nm/A]

J 0.000072[Nms2/rad]

B 0.02045[Nms/rad]

τsf 0.0182[Nm]

Kp 5500

dt 200[µs]

DC motor parameters were presumed to be constant
throughout the simulation. The unstructured uncertainties such
as environmental condition changes, hysteresis and saturation
were neglected. A DoB integrated DC motor was used to
generate simulation data. Armature current, angular velocity,
angular acceleration, and the DoB estimation were recorded
for the parameter estimation process. A random velocity
reference which is presented in figure 8 , had been used to
evaluate the accuracy of the proposed method.

The simulations were carried out under two scenarios
with different number of unknown parameters to examine
the convergence performance of the proposed method. In
each simulation, NRA was performed on recorded data for
5 iterations.

In the first simulation scenario, variations of inertia (4J)
was set to zero. It was carried out only considering the static
friction and coefficient of viscous friction. The modified model
equation that was used in this simulation is expressed in
equation (30).

ˆτdis(k) = B ˙θ(k) + τsf (30)

The results are shown in figures 9,10 and 11. The 3D
and 2D contour spaces which are shown in figure 9 and 10
represent the objective function behaviour. These graphs reveal
that the objective function has a global minima and the path
that NRA underwent to reach minima. Figure 11:(a) shows
the convergence of the objective function described in equation
(21). Since the objective function has quickly attained a stable
value, the appropriateness of the NRA for parameter estima-
tion has been justified. Figure 11:(b) and 11:(c) represents the
convergence of estimated system parameters as the number of
iterations increase. Estimated values of the simulation agrees
quite well with the actual values which are tabulated in table
III.

In the second simulation variation of inertia (4J) also con-
sidered. Hence,the model equation is in the form of equation
(18). Figures 12:(a),(b),(c), and (d) show the convergence of
loss function,static friction, estimated coefficient of viscous
friction, and variation of inertia against the number of itera-
tions. Despite the number of unknown parameters the NRA



Fig. 7: Model of a DC motor integrated with a velocity controller and a DoB

Fig. 8: Velocity reference to the controller

Fig. 9: 3D contour space of loss function

Fig. 10: Path of NRA in contour space

has estimated the parameters with a sound accuracy.Estimated
and actual value comparison is shown in table III.

VI. CONCLUSION

In this study, a novel iterative method of DC motor param-
eter estimation has been introduced. Accuracy of dc motor
parameters in small scale applications is low in traditional
methods of dc motor parameter estimation methods. However,
accurate estimation of dc motor parameters is crucial for
performance of small scale motion applications. This method
is based on the disturbance observer (DOB) estimations of the
dc motor. A regression model that relates system parameters
and motor parameters to the DoB estimation has been derived
in this study. Motor parameters can be estimated by optimizing
the derived regression model. Newton Rapshson algorithm has



(a) (b)

(c)

Fig. 11: Test - 2 results a) Convergence of E(A) b) Convergence of τsf c) Convergence of B

(a) (b)

(c) (d)

Fig. 12: Test - 2 results a) Convergence of E(A) b) Convergence of τsf c) Convergence of B d) Convergence of 4J



TABLE III: Test results

Parameter Actual Value Estimated Value

Test - 1

τsf 0.0182[Nm] 0.0181[Nm]

B 0.02045[Nms/rad] 0.0204[Nms/rad]

Test - 2

τsf 0.0182[Nm] 0.0181[Nm]

B 0.02045[Nms/rad] 0.0204[Nms/rad]

4J 0.00002[Nms2/rad] 0.0000159[Nms2/rad]

been selected to optimize the derived regression model over
other optimization algorithms such as gradient decent due to
its accuracy and speed. The validity of the proposed method
were confirmed and compared in the simulations section.
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